Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells.
نویسندگان
چکیده
The transcription factor NANOG is essential for maintaining pluripotency in embryonic stem cells. We have previously reported the expression of NANOG in adult human fibroblasts; here we present a more thorough investigation into the expression of NANOG in a panel of both differentiated and undifferentiated human cells. We utilize RT-PCR, qRT-PCR, cloning and sequencing, sequence alignment, restriction digestion, immunocytochemistry, Western blotting, and EMSA to investigate expression of NANOG in a variety of somatic, transformed and stem cell phenotypes. RT-PCR and qRT-PCR analysis revealed the presence of NANOG transcripts in all the cell types examined, albeit at magnitudes lower than human embryonic stem cells. Further investigation by single nucleotide polymorphism analysis of expressed transcripts in several cell types detected a NANOG pseudogene, NANOGP8, one of only two NANOG pseudogenes with the potential of encoding a similar size protein to embryonic NANOG (eNANOG). Our analysis demonstrates that although the NANOG protein is detected in nearly all cells examined, expression of the eNANOG and/or NANOGP8 transcript as well as the sub-cellular localization of the protein is cell type-specific. Additionally, smooth muscle cells, which express exclusively NANOGP8, display nuclear localization of NANOG protein, indicating that NANOGP8 is a protein coding gene possibly functioning as a transcription factor. Lastly, all cell types expressing eNANOG and/or NANOGP8 were found to be capable of binding a NANOG consensus sequence in vitro. We conclude that eNANOG is not exclusively expressed in undifferentiated cells and that both eNANOG and NANOGP8 may function as transcription factors in a cell type-specific manner.
منابع مشابه
NANOGP8: Evolution of a Human-Specific Retro-Oncogene
NANOGP8 is a human (Homo sapiens) retrogene, expressed predominantly in cancer cells where its protein product is tumorigenic. It arose through retrotransposition from its parent gene, NANOG, which is expressed predominantly in embryonic stem cells. Based on identification of fixed and polymorphic variants in a genetically diverse set of human NANOG and NANOGP8 sequences, we estimated the evolu...
متن کاملProtective Role of Hypothermia Against Heat Stress in Differentiated and Undifferentiated Human Neural Precursor Cells: A Differential Approach for the Treatment of Traumatic Brain Injury
Introduction: The present study aimed to explore protective mechanisms of hypothermia against mild cold and heat stress on highly proliferative homogeneous human Neural Precursor Cells (NPCs) derived from Subventricular Zone (SVZ) of human fetal brain. Methods: CD133+ve enriched undifferentiated and differentiated human NPCs were exposed to heat stress at 42°C. Then, Western-blot qua...
متن کاملAnalysis of MiRNA-17 and MiRNA-146 Expression During Differentiation of Spermatogonial Stem Like Cells Derived from Mouse Bone Marrow Mesenchymal Stem Cells
In vitro derivation of germ cells from different stem cells sources has been challenging in the treatment of male infertility. MicroRNAs (miRNAs) have an essential role in gene expression at post-transcriptional level. The aim of this research was to find more about miRNA-17 and miRNA-146 expression during differentiation of spermatogonial stem cell like cells (SSC like cells) from mouse bone m...
متن کاملCRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells
NANOG expression in prostate cancer is highly correlated with cancer stem cell characteristics and resistance to androgen deprivation. However, it is not clear whether NANOG or its pseudogenes contribute to the malignant potential of cancer. We established NANOG- and NANOGP8-knockout DU145 prostate cancer cell lines using the CRISPR/Cas9 system. Knockouts of NANOG and NANOGP8 significantly atte...
متن کاملمقایسه بیان کمّی فاکتور نسخهبرداری RUNX2 در تمایز سلولهای بنیادی مزانشیمی با محیط تمایزی استئوبلاستی و داروی زولدرونیک اسید
Background and Objectives : RUNX2 is the most specific transcription factor in osteoblastic differentiation of MSCs. In this research, RUNX2 expression was quantified in MSCs differentiated by osteogenic differentiation medium (ODM) and zoledronic acid (ZA). Materials and Methods: In this experimental study, hMSCs were treated by osteogenic differentiation medium and ZA. RNA extraction was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of developmental biology
دوره 54 11-12 شماره
صفحات -
تاریخ انتشار 2010